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Stability of the replica-symmetric solution
for a perceptron learning from examples
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We study the stability of the replica-symmetric solution for a perceptron learning from examples.
By examining the replicon mode, we find the Almeida-Thouless (AT) line signaling a spin-glass
phase transition. We find an interesting phase diagram where the AT line crosses the line of zero
entropy. Entropy is still negative in a low-temperature region above the AT line. The possibility of
a discontinuous phase transition to the replica-symmetry-breaking phase is also discussed.
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The feedforward layered network [1-4] is considered as
an appropriate neural architecture where various learn-
ing mechanisms can be studied. Gardner [5] showed that
a statistical-mechanical approach can be useful for study-
ing the properties of feedforward networks. Learning
[6-8] in a network with a single layer called a perceptron
[9] is the simplest case and is expected to provide useful
knowledge about learning in multilayered networks.

Sompolinsky, Tishby, and Seung [8, 10] studied learn-
ing from examples in a perceptron and showed that spin-
glass phases exist in some cases. As an approximate
estimate for the phase boundary of a spin-glass phase
they suggested the line of zero entropy below which the
replica-symmetric (RS) solution has negative entropy. In
this paper we investigate the exact phase boundary of a
spin-glass phase for this perceptron learning in a partic-
ular case. We expect an instability line corresponding to
the Almeida-Thouless (AT) line [11].

Following Refs. [8] and [10], we consider a network
with V; input nodes S;(i = 1, ..., N), N synaptic weights
Wi(i=1,...,N), and a single output node ¢ = o(W; S).
A teacher network provides a set of examples consisting
of P input-output pairs (S!,00(S")) , with I =1,...,P.
An output is generated with a transfer function g as o =
g(N~1/28'. W). A student network is trained by tuning
the synaptic weights to minimize the error function from
the correct answer of the teacher network. The error
function F is defined as

E(W;{sY}) = Z % [g(N—l/ZSl W)
=1
—go(N /28! -W°)]2, (1)
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which is the sum of squared errors over all examples. The
number of examples should scale as P = aN.

Regarding this error function as the Hamiltonian of
a thermodynamic system, this learning problem turns
into a statistical-mechanical problem of a disordered sys-
tem. Synaptic weights W; become dynamic variables,
like spins in magnetic systems, and input variables {S'}
are quenched disorder parameters. Temperature T can
be considered as a noise parameter inherent in human
brains or computer devices. The zero-temperature limit
leads to the original perceptron problem of minimizing
the error function. When the teacher and the student
networks have the identical weight space and the trans-
fer function, learning is said to be realizable. In this
case, perfect learning without error is possible for large
a and low T'. When the architectures of the teacher and
the student networks are different, perfect learning is not
possible. This case is called unrealizable. The probability
distribution of S! is Gaussian with variance unity.

Studies of disordered systems such as spin-glasses and
the Hopfield model have been successfully performed us-
ing the replica trick [12, 13] and the relaxation dynamics
(14, 15]. Sompolinsky and his collaborators studied the
perceptron learning using the replica trick and obtained
a RS solution [8,10]. We used the relaxation dynamics
based on the Fokker-Planck equation and reproduced the
identical result, the detail of which is to be presented else-
where [16]. In this paper we will investigate the stability
of the RS solution, which was not rigorously examined by
the previous authors. We find a very interesting phase
transition which was not observed in spin-glass or the
Hopfield model.

The free-energy functional f per neuron was found us-
ing the saddle-point method in large-NN limit, expressed
as [10]
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Here, o,p are replica indices and n is the number of repli-
cas of the student network. The n — 0 limit is taken
afterwards. The trace is carried out over the weights W
of the student network. The weight WO of the teacher
network is quenched. We consider two different cases,
one with a discrete weight space W = *1 and one with a
continuous weight space whose distribution is Gaussian.
The weight space of the teacher network may or may not
be the same as that of the student network. We con-
sider the case where the transfer functions of the teacher
and the student networks are identical and linear, i.e.,
g9(z) = go(z) = x. We will report briefly on the network
with the Boolean transfer function, g(x) = sgn(z) at the
end of the paper. The weight space of the student is cho-
sen to be discrete. If the weight space of the teacher is
also discrete, learning is realizable. On the other hand, if
it is Gaussian, learning is unrealizable. In this case there
is a possibility of the appearance of a spin-glass phase
due to the mismatch of weight space. In the following,
we focus on this unrealizable learning with the weight
mismatch. ) .

A saddle-point solution for R,, R;, Qop, and @, can
be obtained from the stationary condition of the free-
energy functional with respect to variations of those vari-
ables. Then the free energy per neuron can be obtained
by substituting the saddle-point solution into the free-
energy functional. The replica-symmetric assumption is
that a saddle-point solution is independent of replica in-
dices; R, = R, R, = R for all ¢ and Qop = q, Qap =4
for all pairs of o and p. This RS solution is expected to be
correct at high T and for small . It was found that the
RS solution has negative entropy at low T [10]. The line
of zero entropy is only a lower bound of the instability
line of the RS solution.

The stability of the RS solution can be examined by ex-
panding the free-energy functional given in Eq. (2) with
respect to variations 6R0,6Ra,6Qg,,,6Qap of Rg,Ra,Qap,
Qap from the values of the RS solution. Expanding
f up to second order in the variations produces an
n(n + 1) x n(n + 1) matrix M. The stability matrix
M is written as

Aop qvp Co(vs) . 0
—| bop  Aop 0 Copp 3)
Capp 0 Papyrs) bapyre) |

0 Cpyp 6ap)v6) Flap)(vs)

where 655,6(ap)(v5) are the Kronecker delta functions.
The matrix elements are given from second derivatives

- E chpxamp""'z —yZRg:va—% :| .

(o<p)
(2)
[
of the free-energy functional,
*npf ?npf
Aa’p = T op T A A
9R,0R, ok, 0F,
&*npBf A *npf
C =—>=—  C = — 4
a(v6) OR,0Q.s o(v6) 0R,00.5 (4)
P _ ?npf B _ 9?naf
(aB)(v8) 0Qop0Qs ' (aB)(9) 3Qaﬁ3Q75 :

Here, derivatives are evaluated for the RS solution. There
are only a few distinct terms given in the following:

AaazAl, Aap=A2a AO’O'_-A17 z:rp=1‘i

Co(op) = C1, Co(ap) = C2, Co(opy = C1, Co(apy = Ca,
(5)

Plap)(ep) = P1s Plap)as) = P2y Plap)(vs) = P,

Plap)(ap) = Pis Plap)(as) = P2y Plap)ive) = Ps.

The detailed expressions for the above terms are given in
the Appendix.

Most of the eigenvalues of the stability matrix are de-
generate. There are three cases for the expression of
eigenvectors u. The transposed one u” is written by

= ({Ro}, (8RoY, (8Qus}, {6Q0s}) - (6)

(i) 6R, = a, R, = b for all 0. Qo) = ¢, §Qop = d
for all (o, p). There are four distinct eigenvalues.

(ii) Let v be a given value of replica indices. R, = a,
6R, =bforo =v;6R, =a',6R, =b foro #v. §Q,p =
¢, 6Qop =dfor o =vorp=v;8Qo, =, 6Qsp = d
for o, p # v. Orthogonality to the eigenvectors in case
(i) gives

a=(1-n)d, b=(1-n),
(7

2—-n, 2—nd,

There are four distinct eigenvalues, each with a degener-
acy of n — 1.

(iii) Let v,u be a given pair of replica indices. 6 R, = a,
6R, = b for o=voru; 6R, =a, R, =V for o # v, p.
6Qap =G 6Qap = d for (‘77 p) = (Va /‘); 6Qf’p = ¢,
6de =d' foroc =voru; p#vpu, 6Qop = c, 6Qap =d"
for o, p # v, p. Orthogonality to the eigenvectors in cases
(i) and (ii) gives
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a=a' =b=0b =0,

c= ——-———(n - 1)2(n ~3) d, = —3 ; nc", (8)
d= wd" d = ?»—-_____nd,,
2 ’ 2 ’

There are two distinct eigenvalues, each with a degener-
acy of n(n — 3)/2. This case corresponds to the replicon
mode and gives the AT line across which the sign of an
eigenvalue changes.

In limit n — O the cases (i) and (ii) commonly yield
four eigenvalues. They are eigenvalues of a reduced ma-
trix M,

- 1 A o -C
M=o o P 1| (9)
o 2 1 P
where
A=A1—A2, 14:141_142,
C=C1-C,, C=0C1-0Co, (10)

P=P, — AP, +3P;, P=P, — 4P, +3P;.

Two eigenvalues in the case (iii) are found in limit n — 0
as

)\i =%(P1 +p1_2(P2+P2)+(P3+p3)
+{[P, - P —2(P, — By)
+(P3 — P3)]? +4}%) . (11)

A_ is always negative, while the sign of Ay may change
when

1— (P, — 2P, + P3)(PL — 2P, + P3) = 0. (12)

This condition gives the AT line for the perceptron learn-
ing.

We find that the AT line exists for the unrealizable
learning with the weight mismatch. Equation (12) leads
to

(14 8(1 — q)]* — aB?sech?(\/42) = 0. (13)

The change of variable tj-}—Rz — § is used as in the paper
by Seung, Sompolinsky, and Tishby [10] z is a Gaussian
variable with variance unity and the overbar denotes the
average over z. We obtained the identical result for the
AT line via the relaxation dynamics [16]. A spin-glass
phase appears below the AT line. It is expected because
there is no unique configuration {W;} of the student net-
work due to the weight-mismatch. There are many pos-
sible configurations minimizing the error function. If the
AT line is the only instability line for the RS solution, the
line of zero entropy should be below the AT line. How-
ever, in a certain region with low 7" and small a, the AT
line is below the line of zero entropy and terminates at
nonzero «, as shown in Fig. 1.

We expect a different kind of phase transition should
occur above the line of zero entropy which is not covered
by the AT line. We should examine the other eigenvalues.
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FIG. 1. The phase diagram in a-T" plane. The solid line
is the AT line and the dashed line is the line of zero entropy.
The dot-dashed line is the new stability line.

The eigenvalues obtained from the reduced matrix M in
Eq. (9) can be complex. There are two pairs of complex-
conjugate eigenvalues. The sign of all the eigenvalues
does not change in the whole region. Instead, the sign
of the real part of one pair of the two changes at a line,
plotted in Fig 1. It is not clear whether this line signals
a new phase transition. However, it seems that there
should be a solution other than the RS solution above
the AT line.

We are examining the possibility of the one-step
replica-symmetry-breaking (RSB) phase in this problem.
In the studies of spin glasses with p-spin interaction [17,
18], it was found that the one-step RSB solution is exact.
Also, Crisanti and Sommers [19] found that the transi-
tion from the RS phase to the one-step RSB phase can
be discontinuous in a related problem. In this case, the
RS solution is still stable in the sense that the eigen-
values of the stability matrix do not show the change
of sign. Krauth and Mézard [20] studied the one-step
RSB solution of the learning of random input and ouput
mapping originally addressed by Gardner [5]. They also
found that the one-step RSB solution is exact. It is in-
teresting to see whether the one-step RSB solution exists
and whether the transition is discontinuous in our prob-
lem. If the one-step RSB solution exists, it is worthwhile
to check whether it is exact out of many multistep RSB
solutions as it was in the above problems.

A similar problem occurs even for the realizable learn-
ing with discrete weights and a linear transfer function.
It was found that a metastable solution presents nega-
tive entropy at low temperatures [8, 10]. However, we
find that none of the eigenvalues of the stability matrix
shows the change of sign. The study of the one-step RSB
solution may also resolve this problem.

We briefly report on another unrealizable learning
with the weight mismatch where the transfer function
is Boolean, g(z) = sgn(z). In this case the AT line is
given by

1 — K(a, B)sech®y/Gz = 0 (14)
with
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K(a,p) =
where
=7 \/___ (16)
and
H(u) = /oo dz e~ (1/2)? 1

It is an interesting problem whether the AT line and the
line of zero entropy may intersect.

In summary we studied the stability of the RS solu-
tion in the perceptron learning. For the unrealizable case

with weight mismatch we obtained the AT line, below

which the spin-glass phase appears. This is a plausible
result because there are many possible configurations of
the student network minimizing the error with respect to

= 2 /°° dy e~ (/v /oo dt e~ (/D
71-(1 - q) 0 —00
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ue—(1/2)v? B \/%_ﬂ_e u 1)
H(u)+ (e ~1)71  [H(u)+ (ef — 1)~ | ’
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APPENDIX: MATRIX ELEMENTS
OF THE STABILITY MATRIX

The matrix elements in Eq. (5) are given in this sec-
tion. First, those associated with derivatives with respect
to R, and Q,, are given:

the teacher. However, the AT line covers only partially = (@’ (2.9) ) (A1)
the region of negative entropy. We also dilscussed the sta- Az = —a ((#,2,9 > — (Z,9) 2) , (A2)
blity of other eigenvalues other than replicon mode. We _ (24 s\ s s\ia s
suggested a possibility of discontinuous transition to the Cr=-a «?"Tﬁ 1:/> . (x"zp(:%‘:fﬁ >A) ’ (A3)
RSB solution. Cz =-a (<wafcaway> (259)(2atp)) » (A4)
We appreciate Dr. H. Seung for sending his results. - —a( (&2 xﬁ (Zatp) ) (A5)
C. K. would like to thank Dr. David Thouless for dis- P2 — ((JTaxﬁx&) —(Zalp) ) , (A6)
cussions and warm hospitality during a visit to the Uni- P e —a ( (Badpiyds) — (Ead )2) (A7)
versity of Washington and would also like to thank Dr. 3= atpLys atBl )
Hans-Jiirgen Sommers for his comments. We would like  In these equations,
_1
dr,dZ, [ dydy . . L
A A /H - (- Bq-G-)e
(g o) = / dx,d:ca/dydﬁL , (A8)
H ——e
2
r
where The matrix elements associated with derivatives with

L=-38 3 lo(ee) = oW + D idoe — ity
RDILES, Z ~R§Y 3, - %g? (A9)

(a<p)

In n — 0 limit and for the linear transfer function g(x) =

x, some of the matrix elements of the reduced matrix M
are given as

A=o0, (A10)
_ o
RTETRL (A1)
o % .
= [1+,8(1—q)]2 (1 1T A0 )(1 2R—|—q)).
(A12)

respect to f%a and Qag are given as

Ay =—(1—(Ww%?), (A13)
Ay =— (WWWPWO) — (WW?)?), (A14)
Cr=— ((WAWO) — (WeWO)y(WeWh)), (A15)
=~ (WWWWP) — (W W) (WW?)),

(A16)
P =—(1—(Wewh)?), (A17)
Py=— ((WPW?¥) — (Wewh)?), (A18)
By = — (WeWPWYW?) — (WeWwh)?). (A19)

In these equations,
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Tr | (- W7 .. .)exp qZ W"W”+}AZZW"W°

) _ (:épp)

(- WO

(A20)

Tr |exp | ¢ Z Wewe + RZW"WO
o

ap
(e<p)

In n — 0 limit the rest of the matrix elements of M are given as

2a8R 2 ( af

Az”[l—q_1+ﬁ(1—q)+7?i 1+4(1-9)

A 1 e s
C’——(R—\/51+13(1_q)ztanh3(\/§z)> ,

P=-— [1 — 4tanh?(1/§2) + 3tanh4(\/¢§z)] .

) (Ve

(A21)
(A22)

(A23)

The overbar denotes the average over the Gaussian variable z with variance unity. Note that the Gaussian average
over the weight Wy of the teacher is carried out after the matrix elements are found for a fixed W) because it is also

a quenched parameter.
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